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The potentiality of artificial neural networks for multicomponent
analysis in unresolved peaks from capillary electrophoresis (CE) is
evaluated. The system chosen consists of mixtures of three
ebrotidine metabolites, which cannot be successfully separated by
CE. Data selected for analysis consist of UV spectra taken at the
maximum of the CE peak. The most dissimilar analyte, in terms of
spectral differences, is accurately quantitated in any type of mixture
with an overall prediction error of 5%. Because of the strong
interference of the two most overlapped compounds, a preliminary
procedure for spectral data filtering based on principal component
analysis is performed to improve their quantitation.

Introduction

The application of mathematical tools to separation techniques
has been specially developed for liquid chromatography.
Examples describing procedures for resolving overlapping peaks
(1,2), checking the peak purity (3), or improving the quantitation
(4,5) have been reported. However, the linkage of chemometrics
to capillary electrophoresis (CE) has been scarcely addressed. For
instance, the optimization of CE separations using experimental
design (6) and multiple linear regression (7), the quantitation
with partial least-square regression (8), or peak resolutions with
alternating least-squares (9) have been described.

An artificial neural network (ANN) is a data processing system
that is based on neuron relationships occurring in the human
brain. ANN architectures consist of highly interconnected node
structures arranged in layers. The pioneering developments in
ANN date back to the 1940s (10,11). Although the simplicity of
this approach made it a very promising tool for data processing,
ANN fell into disuse for several decades because of the need for
computer facilities. Recent developments in the computational
and mathematical fields have contributed to increasing interest
in these chemometric techniques. Today, ANNs are being used

extensively for solving modeling problems in analytical chemistry
(12–14).

The application of ANN to electrophoretic techniques has been
seldom described to date, although this field is receiving
increasing attention in recent years. A few examples dealing with
ANN in combination with CE have been reported in the literature.
ANN has mainly been used in experimental design for optimizing
separation and improving the quantitation in poorly resolved
peaks. For instance, back propagation (BP)- ANN has been used to
optimize the separation by capillary zone electrophoresis (CZE)
(15–17).  Migration studies for the improvement of the resolution
have also been reported in micellar electrokinetic capillary chro-
matography by using BP-ANN (18). Other examples deal with
ANN classifications of electrophoretic profiles for citrus juice
characterization (19), tumor diagnosis (20), or pentosan polysul-
fate characterization (21). The quantitative determination of
amino acids in complex overlapping peaks from the analysis of
either spectral or electrophoretic profiles has been addressed by
Latorre et al. (22).

The application of ANN to CE analysis creates special difficulties
that are not encountered in other separation techniques, such as
high-performance liquid chromatography (HPLC). This concerns
some particularities of the technique (e.g., temperature gradients
associated to the Joule heating created, comigrations with the
electroosmotic flow, and stacking effects caused by matrix com-
position). As a result, specific CE shortcomings (such as variabil-
ities in migration time, peak broadening and resolution, baseline
drifts, etc.) may arise.

The present paper is aimed at exploring the performance of
ANN for improving the quantitation of analytes in unresolved CE
peaks. Here, some of the drawbacks commented on earlier have
been corrected with a suitable data pretreatment, yet others have
been overcome by proper ANN training. The system chosen for
the study consists of mixtures of three ebrotidine metabolites 
currently present in human urine, namely 4-bromobenzensul-
fonamide (compound A), N-(2-methylsulfonyl-ethylamin-
methylen)-4-bromobenzensulfonamide (compound B), and N-(2-
methylsulfinyl-ethylamin-methylen)-4-bromobenzensulfon-
amide (compound C). The significance of ebrotidine is justified
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because it is used as an antisecretory drug in the treatment of gas-
tric ulcers (23). The analytical methods for the determination of
ebrotidine and its metabolites in corporeal fluids are based on
HPLC and CZE techniques with UV–vis (24–26) and mass spec-
trometry (26–28) detection. 

Compounds A, B, and C are poorly ionized under the experi-
mental conditions for carrying out the CZE separation of
common ebrotidine metabolites. As a result, they are hard to sep-
arate by this technique and, thus, comigrate. ANN can take advan-
tage of the richer information contained in the multidimensional
CE–diode array spectrophotometric (DAS) data, which allow such
compounds to be discriminated and quantitated in unresolved CE
peaks. In particular, spectra taken at peak maximum have been
chosen for ANN analysis.

Theory
General strategy

In this section, some general guidelines concerning the appli-
cation of ANN to CE data and a theoretical background of ANN are
discussed. The resolution of analytical problems dealing with the
simultaneous determination of various (or numerous) com-
pounds commonly involves the application of separation tech-
niques. Among them, CE is gaining popularity in the analytical
field because of its great possibilities.

The first step in the development of a new CE method or appli-
cation is the optimization of the separation conditions in order to
achieve a full resolution of all analytes of interest in the samples.
The electrophoretic separation of analytes currently provides suf-
ficient selectivity for their determination using conventional uni-
variate calibration. As a result, the use of more sophisticated
chemometric algorithms for improving the quantitation is not
necessary. However, despite the great separation performance of
CE, a full resolution of all analytes might not be achieved experi-
mentally. Under these circumstances, the application of chemo-
metrics, particularly ANN, may be especially recommendable to
improve the accuracy of the determination. 

The application of ANN to poorly resolved peaks requires the
achievement of various conditions that the analyst should keep in
mind.

Reproducibility
In some cases, the variability of the migration time affects the

reproducibility of the CE data. Spectral information is more
robust in front of this factor, whereas electrophoretic profiles may
be severely influenced by this variation. In these circumstances,
data pretreatments for peak shifting correction may still be used
to correct this variability.

Dissimilarity
Two or more comigrating analytes could be resolved chemo-

metrically when they present a reasonable degree of dissimilarity
in their respective responses. Although full selectivity is not
required, each analyte obviously has to be distinguishable from
each other. Therefore, the particular features in the response of
the analyte may be advantageously used for its determination in
the presence of other species. Otherwise, when the similarity
values of the analyte profiles are extreme, the systems may not be
solved chemometrically, thus, the strategy for the resolution of

the analytical problem should be reconsidered. In CE with a fast
scanning detection system [e.g., CE–diode array detection
(DAD)], spectrometric and electrophoretic profiles can be used as
analytical data. Therefore, the dissimilarity of the profiles of the
analytes can be evaluated in both spectrometric and time
domains in order to ascertain the type of data that is more suit-
able for further chemometric analysis. Experimentally, dissimi-
larities are checked from the profiles obtained from pure
standards of each component by calculating the correlation co-
efficient between the corresponding profiles.

ANNs
ANNs consist of highly interconnected node structures

arranged in layers. The most common ANN learning process used
in analytical chemistry is the BP method. A more detailed descrip-
tion is given elsewhere (12–14).

The performance of ANN for predicting the analytes was evalu-
ated by leave-one-out cross validation. In this approach, each
sample is predicted using the remaining samples as the training
set. In addition, each analyte was quantitated individually from an
ANN trained specifically for it, as suggested by Courtois et al. (14).
This was because a simpler ANN could provide better models 
for predicting each particular analyte than more complex archi-
tectures.

The architecture of an ANN in these studies consisted of a
three-layer structure. The input layer contained the elec-
trophoretic spectral response, the output layer delivered the con-
centration of a particular analyte, and the hidden layer correlated
the information between inputs and outputs. More complex cases
can be designed in which two or more hidden layers are included.

The activation of a hidden neuron is defined as the sum of
weighed inputs to its node:

Eq. 1

where nk is the activation value of neuron k, bk is the bias value,
xj is the input variable for a given sample, and wjk is the weight.
The relationship between nk and the values given by the neuron
(ak) was established with a sigmoid transfer function, as follows:

Eq. 2

The analyte concentration (y) is correlated with these trans-
ferred values using the equation:

Eq. 3

where y is the concentration predicted and wk and b are the cor-
responding weight and bias values for the  hidden nodes of k. The
BP network “learns” by adjusting its weights and biases iteratively
from random values given initially, until the average error
reaches a desired value (here, the value was fixed at 0.05%) or the
number of iterations exceeds a previously fixed maximum (here,
50,000 epochs).

The training or calibration step involved the use of proper stan-
dards to establish the mathematical relationship between the
experimental response and the analyte concentration. Although
there are no specific rules, the number of standards should

nk = ∑wjk • xj + bk
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y = ∑ ak • wk + b
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increase with the complexity of the system (number of analytes,
degree of overlapping, etc.). In general, the number of standards
should be higher than the number of weights and biases to be
fitted in the model. Furthermore, standards should cover the
variability displayed by the unknown samples in terms of concen-
tration, matrix composition, etc.

Once the training process was completed, the optimized feed-
forward network architecture could be used for predicting the
output values for unknown samples from the corresponding input
values.

Experimental

Chemicals
4-bromobenzensulfonamide (compound A), N-(2-methylsul-

fonyl-ethylamine-methylene)-4-bromobenzensulfonamide (com-
pound B), and N-(2-methylsulfinyl-ethylamin-methylene)-
4-bromobenzensulfonamide (compound C) were purchased from
Grupo Ferrer (Barcelona, Spain). Work solutions were prepared
in acetonitrile (Merck, Darmstadt, Germany). Reagents used for
the preparation of carrier electrolyte solution were acetic acid and
ammonia (Merck).

Samples
The single-, two-, and three-component samples were prepared

according to full factorial designs at two concentration levels. The
uppercase letter indicates the metabolite, and the number refers
to the concentration level. The low level that contained 100
µg/mL of analyte is referred to as 1; the high level that contained
200 µg/mL is referred to as 2. For instance, A1B2 is the two-com-
ponent mixture that consisted of 100 µg/mL of compound A and
200 µg/mL of compound B.

Instrumentation
CE runs were carried out with a Beckman (Fullerton, CA)

P/ACE System 5500 system with a DAS detector. A fused-silica
capillary (Supelco, Bellefonte, PA) of 50–57 cm and 75-µm i.d.
was used. Spectra were acquired at regular steps of 0.26 s during
the electropherogram. Data were converted into ASCII files for
mathematical treatment with a PC using Beckman P/ACE station
software (version 1.0). Eleven working wavelengths (220–280
nm) were chosen for analysis.

CE conditions
A 50mM acetic–acetate buffer at pH 5.7 (adjusted with

ammonia) was used as the carrier electrolyte. CE potential was set
at 20 kV, and the temperature was held at 25oC. The sample was
hydrodynamically injected (0.5 psi) for 4 s.

The capillary was pretreated by rinsing (20 psi) 1M sodium
hydroxide solution for 5 min followed by a 5-min ultrapure water
rinse. It was then stabilized with the carrier electrolyte for 1 h.
The capillary was rinsed with the buffer for 2 min before each run.

Data pretreatment
A data pretreatment was performed in order to correct peak

shifting and spectral drifts. The variability of the migration time
of the CZE peaks was corrected with a peak alignment procedure.
A peak maximum at 220 nm was used to position the electro-

pherogram. The spectrum at the beginning of the time window
was subtracted over the whole time range in order to correct
spectral drift. Refractive index correction was carried out by sub-
tracting the absorbances at 290 nm from the time profile at each
wavelength. A more detailed description is given elsewhere (9).

Software
Matlab (Natick, MA) for windows (version 4.2) was used for shift

adjustment. The ANN software was Simtelnet (Cheshire, U.K.)
EASYNN60 program (available from ftp://ftp.rediris.es/mirror/
Simtelnet/win95/neural/00_index.txt).

Results and Discussion

Figure 1 shows the spectra of compounds A, B, and C obtained
from pure standards. It can be seen that compound A displays the
most distinguishable spectrum, whereas spectra of compounds B
and C are highly correlated. These spectral features can be related
to the molecular structures of these compounds; compounds B
and C are almost identical (they only differ in the presence of a
sulfoxide or sulfone group), and in contrast, compound A has a
rather different chemical structure. Owing to the lack of selec-
tivity for the compounds under study, their determination should
be based on the richer information contained in the multivariate
spectral data.

Data pretreatment
The high voltage applied during the CE run generates a heating

by Joule effect that should be dissipated appropriately. Heating is
problematic because it can cause nonuniform temperature gradi-
ents and subsequent band broadening. Additionally, the run-to-
run reproducibility of migration time, stability of the baseline,
and resolution can be seriously affected by this phenomenon. In
this paper, the variability of the migration time and the baseline
drift were minimized with a proper data pretreatment (see the
Experimental section). Unfortunately, variations in the resolution
could not be corrected easily. Furthermore, the EOF peak signal
caused by the sample solvent overlapped with peaks of com-
pounds A, B, and C and, thus, interfered with their analysis. This
represented an additional drawback for the data treatment as the
variability of this peak was especially remarkable. Therefore, from

Figure 1. Spectra profiles of compounds A, B, and C from pure standards con-
taining 200 µg/mL.
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resolution and EOF changes, two additional sources of data vari-
ance should be modeled implicitly during the ANN learning 
process.

ANN data analysis
In the present study, ANN has been used for solving the lack of

selectivity, and then for quantitating these analytes in single-,
two-, and three-component mixtures. For this purpose, BP-ANN
with sigmoid transfer neurons were trained. The corresponding
ANN architecture for these cases consisted of a three-layer ANN
containing the inputs that corresponded to the absorbance values
taken at each working wavelength (alternatively, the scores of
principal components, discussed later) of a given sample, various
nodes in the hidden layer, and one node as output. In all cases, the
values of momentum and learning rate were 0.3 and 0.6, respec-
tively. These parameters were used for optimizing the weight
changes in each iteration cycle.

The number of nodes to be used in the hidden layer was opti-
mized by minimizing the prediction error. In a majority of cases,
three nodes were found to be optimal. The influence of the
number of nodes on the predictions is illustrated in Figure 2, in
which the concentration of compound A in the three-component
mixture A1B2C2 was estimated as a function of this parameter. As
shown in this figure, poor predictions were obtained when using
one or two nodes, although the accuracy was acceptable for more
than three nodes. In addition, the performance of the quantita-
tion was not affected significantly when increasing the number of
nodes. Although good estimations were obtained with more than
three nodes, these more complex architectures could lead to
overfitting and may provide wrong predictions.

Data autoscaling and normalization were two preprocessing
procedures that were evaluated in order to ascertain their effect
on the predictions. Results were compared with those obtained
from the original data using compound A as a model. The overall
prediction errors were similar for original, autoscaled, and nor-
malized data. As a conclusion, these preprocessing procedures did
not significantly improve the quantitation, therefore nonprepro-
cessed data were used in further studies.

The stability of the ANN structure for training and prediction
was checked in a series of 50 runs, each one using initial random
estimates of weights and biases. A1B2C2 was chosen as a test
sample, which was predicted using the remaining samples as
standards. As a result, the average concentration value obtained
in this series of calculations was 96 mg/L (actual value 100 mg/L),
and the relative standard deviation was 4.1%. These values sug-

gested that the net training was very efficient at
providing similar predictions for any run initial-
ized randomly.

The variation of the error in the training (cali-
bration) and prediction steps versus the number
of iterations is shown in Figure 3 for compound A.
As in the previous study, A1B2C2 was selected as
the test sample. In the initial iteration cycles, the
training error decreased dramatically with the
number of epochs, yet from 1000 cycles the
improvement in the fitting of the data was more
gradual. However, the number of steps required to
reach a minimum in the prediction of a test
sample was considerably higher. In general,
between 20,000 and 50,000 epochs may be neces-
sary to train the net to reach the optimum results.
The conclusion of this study can be extended to

Figure 3. Variation of the training and prediction errors with the number of
iteration cycles for compound A. Test sample, A1B2C2. Symbols are given for
calibration (��) and prediction (�).

Figure 2. Variation of the predicted concentration of compound A for the
sample A1B2C2 as a function of the number of nodes in the hidden layer.
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Figure 4. Prediction of the concentration of compound A using ANN for the single-, two-, and three-
component mixtures. The predicted concentration is in bars; the actual concentrations is in dots. The
precision range is also indicated.
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compounds B and C and to the other test samples.
The quantitation of compound A in a series of single-, two-, and

three-component samples is detailed in Figure 4. The bars repre-
sent the average concentration predicted, and the dots indicate
the corresponding actual values. The precision of these predic-
tions was evaluated from three independent training processes
after the corresponding random initializations of network biases
and weights.  The precision range is also plotted. The concor-
dance between the actual and predicted values is considered
acceptable, with an overall prediction error of 5.0%. These results
proved the possibility of using these modeling techniques for the
quantitation of a given nonresolved compound in a complex mix-
ture when the analyte spectrum differs sufficiently from the
others.

The quantitation of compounds B and C using the same mod-
eling strategy was deficient because of their high spectral over-
lapping. This finding suggested the limitations of ANN for making
accurate predictions for strongly correlated data. However, the
total amount of these compounds (i.e., B + C concentrations) was
estimated with reasonable concordance, with the overall predic-
tion error at 11.9%. Although this total concentration did not
provide information about each species, it served as biochemical
estimation of the extension of some overall metabolism pathways.
Indeed, the chemical and biochemical behavior of the sulfoxide
and sulfone metabolites are similar.

In order to try to improve the determination of these com-
pounds separately, a preliminary data treatment for removing
correlated information was checked. This strategy consisted of
data filtering using principal component analysis (PCA). The orig-
inal information contained in the 11 experimental variables was
concentrated into 6 principal components, which were needed to
keep the significant variance. Predictions for compounds B and C
using this type of data improved notably with respect to the pre-
vious approach, with overall errors at approximately 10%. These
results were considered acceptable when taking into account
their strong spectral overlapping.

In order to check the performance of ANN with respect to other
chemometric methods, results from this analysis were compared
with those obtained with various multivariate calibration
methods [e.g., principal component regression (PCR), linear and
nonlinear partial least-square regression (PLS), multivariate
curve resolution based on alternating least-squares (ALS), etc.].
In the case of compound A, prediction errors were 9.0, 7.6, and
12.0% for PCR, PLS, and ALS, respectively. For compounds B and
C, the error ranged between 9 and 20%. From these values, ANN
provided, at least, results as accurate as any other chemometric
method. Additionally, ANNs were especially appropriate to detect
the absence of the analyte (i.e., a concentration of 0 mg/L) or pre-
dict low concentrations, which was a more difficult task when
using the other chemometric methods.

Conclusion

This paper is focused on the application of ANN to the evalua-
tion of CZE data. The general strategy for quantitating in overlap-
ping peaks is discussed. The application of chemometrics, par-

ticularly ANN, to CE is still in its infancy in comparison with
other separation techniques, so there is a lot of work to do in this
field. Similar to HPLC and other separation techniques, CE peaks
can be analyzed using ANN, although additional shortcomings
related to the complexity of the technique and the generated CE
data have to be solved. The ANN performance was checked in var-
ious examples of different complexity in terms of spectral correla-
tion. The quantitation of highly similar compounds was severely
interfered, but the more dissimilar could be determined accu-
rately. A potential way of improving the determination of highly
correlated compounds was based on the application of PCA fil-
tering in order to remove redundant information. Under this
approach, results improved significantly and even highly corre-
lated compounds could be predicted with reasonable accuracy. In
addition, the general conclusions drawn with respect to the appli-
cability of ANN to electrophoretic data for improving the quanti-
tation can be extended to many other examples in which a full
separation is not achieved.
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